Now let us consider the boundary. '��`�p|h�Y5��E�h���3�n�[Yy�C�6�E J��>���O9 H/1:Q�����p��$R����.%A�{�8N7;5-�q\�ۍz贶n�ȌL�UC�a ��FǍ�ujke�a[ڳ��N��31p���G�$q�''k�e��� ��gZ0��0�,�4�!2Z��d �9z���f�^��1F'���E���o2��Ȓ��9)�}�.d@��!��uP�+�� /`}ծ�D��Je};�˕���;�x������% ��G3:�Z��-J�2u4�M���[4�1��{[�}����e"���HM8��� �Nq-D�� �䜵����(�+�)@U- �5�� �iR�г�}2l[�vN;8.j�m�U �ӳl���g��uCq;QY������e��v�����7�W����k��s ��a��T¦�k���D�Z�t���� �]����R�B7Z֡�g�=�P.�`�[ƾ?kQ�8��0)Sa���Jk��
�F���a#J\�~��V2�W�Q�|����75�1���Ǵz p�?J�J�_�[�&��q�j��P#��ؼ*��8:����p4AP@*B:�9.j�6�`\���"�I�e.orCHq]�>�K������Q(ܙ�n�
��:�oѩ��z�����M |/��&_?^�:�� ���g���+_I��� pr;� �3�5����: ���)��� ����{� ��|���tww�X,��� ,�˺�ӂ����z�#}��j�fbˡ:��'�Z ��"��ß*�" ʲ|xx���N3�~���v�"�y�h4Jծ���+䍧�P �wb��z?h����|�������y����畃� U�5i��j�1��� ��E&/��P�?
2 0 obj 5 0 obj stream "�K��B+}�>�v]���k��Mt�*^��a�w�+�z��p2��a0�g(�M�B���9{o������6i눎�@Vr֙��"�0��g0�NPtD���ժ�*��*J�ίh��hU��s�nM�m���]ݥ����į$aOij�f�E�9H}7��IT�%g���K$(4R9H�[q/��g��E���tT2Q%�:Ba4 �.h_a� �*\ߍ�j~T�\��>s6��C�ƴr�̩��Gw/�0gE����@6�6�{�:��ا}��y)��f�d���0d9 s�B0�� �*N����+�� @͡�
<>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> ��-�O��:6��?r�p�qV�Z��Y����*}D�L��@-�p^}�ˋK�`I@+zm%�!�' �%�E�=wd)��R�Tl��5u`��r�.��j�����2|Da�v#7���^A��b�,���ҷ�����xE��lu�#[�oaYk�Q���V���w\]���� S������t��Sڭ�{�F����%z��#RSф�:�dv���&�,n��S�Y�d�9N�X�u,eʻd��_� ��L# �.�҃Y����Kq�ʂ:��LJm'y�C/|ħ��P ���+�٩0Ю0>od�96���B^�.�ٲ@w�n7�n9�w^'��FۆX�35��~k���nH��}g�;���|��hmڤ^ �6�����*�H�G4��T{(a���dvh.�j�:.��)^u����t�q9�cY ���c�q�1���_��}��eҒ��-]�衯�`�m"B�E[�4�����ILkW�&p1w8GV>d8[.��+zj-Hv>�0ċ��ϔ8Vy��$j��I"d�}�L�Q���Cx���)sn�s �6! So there are numbers λ and μ (called Lagrange multipliers) such that ∇ f(x 0,y 0,z 0) =λ ∇ g(x 0,y 0,z 0) + μ ∇ h(x 0,y 0,z 0) The extreme values are obtained by solving for the five unknowns x, y, z, λ and μ.
5 0 obj
%����
"3ϴ�1�&vӖϮ҇�D?�4%�/�Ԧ��&���Dy9/Vw��{I�U|w�Q����Qu���BJ�w��+�W-������S���:z��I�� ��~u(=釢�������ګ�Չ���ԡ����NV �^�E��P �IQ�UV�h�'W� 8���(0u��a)��kS�ց+f*g� �����o��ۚ������{ l�A��h`O�hD�n�%�3��;�-Wv��;�@�Χ5�����Tj�j���?r����,�[M�D�bB�W���X]��N���ߚ�q)K'3'����PVp'ǐVP~h�(�KT�V�U� �`2o5e��2�W�ƭA'�Nܸ0X�Ad95���a4Q1 b��jo�e?��q��K�ே*��k��t'K}�_�D�nDt��.s >v�'��.u�2���zb�*���r��Ū� ��kbj����!�TtE3m��=��1�n���� ���^����N(�GAY �^3 9JXג��T� -��H�����^��'Jn\��tNԨk,�5,ϘZ�ž��� i��_nM �c�5�̏Hx/6i��;zdbx����#�*�$lDaHU���{1�G��j�\k��(��PP'ImVjɩh�"�DK�2���(�������q�A4����]�0�} <> 4 0 obj It is in this second step that we will use Lagrange multipliers. <> endstream <> In the previous section we optimized (i.e.
3 0 obj Section 3-5 : Lagrange Multipliers. 4 0 obj D� \�^\hk$y�� �=�b���B,���P21ݯS1�CЎN���&�uzԬ��Q�� ,�t� %PDF-1.3 endobj stream
�+�����F�i�PhG�y2�D��WBȦ. and find the stationary points of L {\displaystyle {\mathcal {L}}} considered as a function of x {\displaystyle x} and the Lagrange multiplier λ {\displaystyle \lambda }.
���\uK� �X���gy�`����X�uWj0�Z�z&y5�a%x�Ξ%q r�j��1a|Bi�t��V�I��f+*�yPa?\H�H�uz��F+����z]��� ����`sg�$*��e���4���Lo�)z�� *���i+kWQ������Z^Ҿx-b�I�ML;r��t���D�y]@�ۋd= �/�p lfBZ�d��L�*�ر�V�'+����9f���1�j�@����U�;��h���/����%MBL\�YW3ak�q�a��.�i� This is done by writing the above equation in terms of the components and using the constraint equations: f x
x���AN"A��D�cg��{N�,�.���s�,X��c$��yc�
One solution is λ = 0, but this forces one of the variables to equal zero and so the utility is zero.
�L�\[�YY�ѡ�y\�`I74 G��D. Equality Constrained Problems 6.252 NONLINEAR PROGRAMMING LECTURE 11 CONSTRAINED OPTIMIZATION; LAGRANGE MULTIPLIERS LECTURE OUTLINE • Equality Constrained Problems • Basic Lagrange Multiplier Theorem • Proof 1: Elimination Approach • Proof 2: Penalty Approach Equality constrained problem Y..M��qu�q��} ��\ �Ds��cw�7@��Lq�ߜ��־���M�{���"E��QKy��i-�Dcۊ~J7GS�1��K��L�MΦ|9�;���rߢi뭲P�+��O��J˲��R�l��#�]���Ė�D߹V�����I��PU2U��,��0Ό����(SD�q�#|��l�s��F��!��?�ӫJe�^��>�o��?���XI�u|���'�ۮ&ꨃK��W�Q6FW��.�0���_���D�S��$J��Όhw$����ѽ��,���$�0�b``o�3��Te�p4��\L���/��.6�a�b��&>{]J`�@�̧e2��ux[��-5�HX]A�j�!7��z�Ma��Pz�X�� Ƌvi֣�̲�z� {wFo���˳��d�C�6�z ��X������3��{u�Y��^����ob�1��\\�EX�@[x��X�h!L�Ѹ�L�J[ ϗ��%ju�E~��N��~ -�2J�ao�N��ug����L{��a�����ƾ��eP��H�U2��3�� 6Q1��R㽰�7� 5��Ky�J��M�J֯n_�����惽��c��#�yp��3��X6�?μ��B-ҝ�>�F@DZ�yu�͔%�O�%�myB���[� \>%]�U5�R$)-���X�iQr�g��PC�2և܀���̍黫��ʅ�jvWX5jm5���+�+���. <>
endobj While it has applications far beyond machine learning (it was originally developed to solve physics equa-tions), it is used for several key derivations in machine learning. •The constraint x≥−1 does not affect the solution, and is called a non-binding or an inactive constraint. << /Length 5 0 R /Filter /FlateDecode >>
2 ECONOMIC APPLICATIONS OF LAGRANGE MULTIPLIERS If we multiply the first equation by x 1/ a 1, the second equation by x 2/ 2, and the third equation by x 3/a 3, then they are all equal: xa 1 1 x a 2 2 x a 3 3 = λp 1x a 1 = λp 2x a 2 = λp 3x a 3.
endobj
���c����' F$˙�J��+\��1������C�MDX����0��镠�5�#7i�踎A�bc�lj uJ���� �t�)v�����Fh�ll���S�F!�H���@!���+,�=�¦�\\�b��w�`Ro�; �6���Q�f'�#�L@��:����=6OάTܛ��.F�s�͋I�����_�(-e�L�nl����;��,�K���B��ҍ:��R��9������+�2o�p" ���+{{d�m̈�������Ue��۸��H�^�{� �e������t�: ��@�9Vȋ0��T *=8�N�\��S*�P�7i��+!�j�ScVB����$+[��:�,��E}����a�|%��N`��%"l�ͻ��0� %PDF-1.4 D and find all extreme values.
0�2�y��i�����݂şs��u���S�v$��p#t� ĺ�;�9}��|�"�����Yp1鏳�El��l�p�M�0(?y, • fx(x,y)=y • fy(x,y)=x We therefore have a critical point at (0 ,0) and f(0,0) = 0. 4�A�J�N���������dj½��N ����gw�i�� �p�7�I�i��pf�W��C\��܀ܴ�AF�)�ɤ^CoQ��S&d[u��¸�m�(���u���ŶX����>��2����WI_^\��Z@Gd��uMh��y��j�`z���;�Ә@j!
stream %���������
LAGRANGE MULTIPLIERS William F. Trench Andrew G. Cowles Distinguished Professor Emeritus Department of Mathematics Trinity University San Antonio, Texas, USA wtrench@trinity.edu This is a supplement to the author’s Introductionto Real Analysis. Lagrange Multipliers without Permanent Scarring Dan Klein 1 Introduction This tutorialassumes that youwant toknowwhat Lagrangemultipliers are, butare moreinterested ingetting the intuitions and central ideas. CSC 411 / CSC D11 / CSC C11 Lagrange Multipliers 14 Lagrange Multipliers The Method of Lagrange Multipliers is a powerful technique for constrained optimization. x��]I�7rvط���7���5�M���lk�>�|��\ĥ�fS��;3�B%�z���¡���( �������"��������/�۟?
x�}�[k1�����3��
ח�D.�Z�p�������h�`|���J�@�� K���Öz| M��"ni�J�?�^�����$���o���V���y쇬�g[k���N��ś�k�!���fF������-k�W �)f�,H�rq��X�w� `�#���B�%:�?��I�6�ǰQ��x�=VSJ�i,�'�1�����푑���� �WY��2��b�Y�����&��2&���nV��T�F70�Ӥ�m�u�����ME[���r���H���]�*�hA�U��Ć~���M��^..�s�;��?χ���4��r]�K ��EZ���Ԩ/`�Z���Dp���ėZ.֗��ۭ5{s�$i']uv��; 3�釡�a\�$u`����L� endobj |%�}���9����xT�ud�����EQ��i�' pH���j��>�����9����Ӳ|�Q+EA�g��V�S�bi�zq��dN��*'^�g�46Yj�㓚��4c�J.HV�5>$!jWQ��l�=�s�=��{���ew.��ϡ?~{�}��������{��e�. ;;��?�|���dҼ��ss�������~���G 8���"�|UU�n7��N�3�#�O��X���Ov��)������e,�"Q|6�5�?
%PDF-1.5
<>>>
1 0 obj
It has been judged to meet the evaluation criteria set by the Editorial Board of the American
%�쏢 found the absolute extrema) a function on a region that contained its boundary.Finding potential optimal points in the interior of the region isn’t too bad in general, all that we needed to do was find the critical points and plug them into the function.
We will use Lagrange multipliers and let the constraint be x2 +y2 =9. The region D is a circle of radius 2 p 2. x��Ms�����+ʻ2�jW��w���rر1+E�`�@S��Y~̈�g��s��[�yH ��&i6<3�F������?�߶?�}�?Ӻ�˼����?�w�o}�ۦ)����㶛��]�m�2��m�����k���������W�.�g_�зg7��k^۳���o��4���y�����s��h�Й۳�=��c�4ͥ?ȳ������{$՞��]���!�m�p���Y�-�0ν�|�������>���?������{����}����oٌa[�u*q�ۼ��n������o۩�tӾi���wp�+}NC�i�M�+�8�tX�w�)2·�lC}���{��Y�����E��N��gvN�6Iؘ��Q�)'#%��}~��D��p��/��w���H���ꛇ��|`�V��}���I���j'���Bx'��cj��0�ݲl-��ô���N����Nzǹ�nt�w�� z��nh�Z�V͙x�Z���x�hy[�+�\9� O��VY��7`'�t2E�m� �Y��6o�܍�0LQj�]�������)�\队&�C ��#fe5x�� a���I�ڜ����?oy >�h}}2"}� )�y�\�NQ�!�
stream Constrained Optimization using Lagrange Multipliers 5 Figure2shows that: •J A(x,λ) is independent of λat x= b, •the saddle point of J A(x,λ) occurs at a negative value of λ, so ∂J A/∂λ6= 0 for any λ≥0.